

Integrity ★ Service ★ Excellence

Strain- and Temperature-Dependence of Electromagnetic Metamaterials

Dr. Brandon Arritt
Section Chief
AFRL/RVSVS
Space Vehicles Directorate
Air Force Research Laboratory

including suggestions for reducing	completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Infor	mation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington		
1. REPORT DATE AUG 2012		2. REPORT TYPE		3. DATES COVERED 00-00-2012 to 00-00-2012			
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Strain- and Tempe	rature-Dependence	Metamaterials	5b. GRANT NUM	MBER			
				5c. PROGRAM E	ELEMENT NUMBER		
6. AUTHOR(S)		5d. PROJECT NUMBER					
			5e. TASK NUMBER				
Strain- and Temperature-Dependence of Electromagnetic Metamaterials 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER							
Air Force Research							
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
		on unlimited					
Presented at the 2r Grantees'/Contrac	nd Multifunctional M tors' Meeting for A	FOSR Program on 1	Mechanics of Mu	ltifunctional	Materials &		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT OF PAGES RESPONSIE Same as 14 Report (SAR)		RESPONSIBLE PERSON		

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Agenda

- Motivation
- Analytic Expression for Constitutive Parameters
- Equivalent Circuit Expressions
- Strain-Dependence
- Temperature-Dependence
- Low Modulus Substrate
- Testing
- Process
- Conclusions

Motivation

Tailored EM Response

- Engineered Constitutive Props:
 Permittivity, Permeability,
 Magneto-electric coupling
- Frequency-dependent
- Anisotropic
- Inhomogeneous
- Impressive Results: Lab Env.

Courtesy SensorMetrix

Applied Physics Letters, 88, 081101 (2006)

Science, 314, 977 (2006)

IEEE Antennas and Wireless Propagation Letters,8, 1268-1271 (2009) Page 3/14

Motivation

- Defense Systems Operate in Extreme Environments
- Require ability to understand and predict performance before transitioning into Operational Platforms
 - Temperature Changes
 - Mechanical Loading
- Large Structures, Dynamic Environment, Many Unique Unit Cell Designs

Analytic Expressions for Constitutive Parameters

- Analytic Expressions for ε and μ
 - ELC Unit Cell
 - Source is external
 - Prediction of full Structure's Performance

$$\varepsilon = \overline{\varepsilon} \frac{\frac{\theta d}{2}}{\sin \frac{\theta d}{2} \cos \frac{\theta d}{2}} \qquad \mu = \frac{\frac{\theta d}{2}}{\sin \frac{\theta d}{2}} \cos \frac{\theta d}{2} \qquad \overline{\varepsilon}(f) = \varepsilon_b - \frac{f_p^2}{f^2 - f_0^2 + i\Gamma_e f}$$

$$\theta = n_{eff} \frac{\omega}{c}$$

Alternate Form of the Lorentzian Term

$$\begin{split} \overline{\varepsilon} = 1 + \frac{C_{ext}}{d\varepsilon_0} \frac{\omega_0^2 - \omega^2}{\omega_0^2 - \omega^2 \left(1 + \frac{C_{ext}}{C_{int}}\right)} & \omega_0^2 = \frac{1}{LC_{int}} \qquad L = L + \frac{R}{j\omega} \\ \sin \frac{\theta d}{2} = \sqrt{\overline{\varepsilon}} \, \frac{kd}{2} \end{split}$$

X d d

Equivalent Circuit Expressions

- Equivalent circuits expressions are functions of geometry and materials properties
 - Mechanical Strain: Change in Geometry
 - Temperature Change: Mechanical Strain and Changes in Material Properties

$$\begin{split} &C = C_a + C_s \\ &C_a = \varepsilon_0 \frac{2}{\pi} \ln \left(2\beta \frac{H}{s} \right) W \end{split} \qquad L = \frac{\mu_0 l}{2\pi} \left[\ln \left(\frac{2l}{b} \right) + \frac{1}{2} + \frac{b}{3l} - \frac{b^2}{24l^2} \right] \\ &C_s = \varepsilon_0 \frac{\varepsilon_s - 1}{\frac{s}{h} + \frac{4}{\pi} \ln \beta} W \qquad R = \frac{l}{\sigma A} \quad A = b \delta \quad \left(\delta = \sqrt{\frac{2}{\omega_0 \mu \sigma}} \right) \end{split}$$

- Utilized full wave simulation to assess parameter values at baseline condition
 - Expressions utilized to determine changes in value as a function of strain and temperature
 - Minimizes errors from inaccurate expressions

Strain-Dependence

Temperature-Dependence

Page 8/14

Low Modulus Substrates

- Previous analysis utilized thick, high-modulus substrates
 - Homogeneous Strain Profile
 - Simplified integration into analytic expressions
- A soft substrate complicates the strain profile
 - Utilize shear-lag models to describe the different strain levels in the copper and dielectric
 - Modifies geometry from previous equivalent circuit expressions

Low Modulus Substrate

Testing

- Facility at Duke University
 - Loadframe
 - RF Characterization
- Photogrammetry
 - Large area strain mapping
- Mechanical Characterization
 - At AFRL
 - Material Props did not meet vendor specifications

Test Results

- Predicted different shifts for the different samples
- Understanding EM performance requires knowledge of the full strain vector

	Pyralux, ½0z	Pyralux, ½0z	Pyralux, 1oz	Pyralux, 1oz	5880,	5880,	5880,
	Cu, Sample 1,	Cu, Sample 2,	Cu, Sample 1,	Cu, Sample 2,	Sample 1,	Sample 1,	Sample 2,
	2400 lbs	2400 lbs	2400 lbs	2400 lbs	1200 lbs	1600 lbs	1250 lbs
E _{XX} (%)	-1.12 to	-1.12 to	-1.25 to	-1.12 to	-0.73 to -	-1.26 to	-0.79 to
	-1.06	-0.99	-1.19	-1.06	0.59	-0.99	-0.66
E _{YY} (%)	4.16 to	4.03 to	3.76 to	4.03 to	1.10 to	1.83 to	1.10 to
	4.3	4.1	3.96	4.1	1.14	1.87	1.14
Predicted	-0.032	-0.030	-0.020	-0.029	+0.009	+0.018	+0.012
$\Delta f_0 (\text{GHz})$							
StDev	0.002	0.003	0.002	0.001	0.006	0.003	0.003
Δf_0 (GHz)							
Test Results (GHz)	-0.039	-0.032	-0.026	-0.029	+0.011	+0.018	+0.013

The Process

S₁₁, S₂₁, S₁₂, S₂₂

n, z, ε, μ, θ

- Baseline EM Parameters Extracted from Full-Wave Simulations
- Strain/Temp Profiles pulled from Finite Element Software
- Simple Scripts executed to determine EM Parameters at given strain/temp condition

Conclusions

- Analytic Expressions are powerful tools for describing metamaterial strain/temp-dependence
 - Provide insight into physics behind linkage
 - Enable accurate prediction over the continuum of strains/temps
 - Rapid description of properties; >10⁵ redux in model complexity
 - Rapidly predict strain/temp-dependence for unit cells in same design "family"
- Enable efficient determination of EM performance of large structures, with multiple unit cell designs, under complicated strain/temp profiles
- Care must be exercised in choosing appropriate analytic expressions
 - Circuit elements
 - Constitutive properties
- Process extendable to other unit cell designs
 - Magnetic metamaterials/SRRs
 - Owing to similar analytic expressions and circuit elements